Store

Test Bank for University Calculus, Early Transcendentals ,(3rd Edition) by Joel R. Hass

By: Maurice D. Weir , Joel R. Hass
ISBN-10: 321999576
/ ISBN-13: 9780321999573

Study Guide Details

Format: Downloadable ZIP Fille
Authors: Maurice D. Weir , Joel R. Hass
Secure Stripe Payment Logo.png

TEST BANK

$35.00 $30.00

Instant Download to your account.

Description

Table of Contents

1. Functions
1.1 Functions and Their Graphs
1.2 Combining Functions; Shifting and Scaling Graphs
1.3 Trigonometric Functions
1.4 Graphing with Software
1.5 Exponential Functions
1.6 Inverse Functions and Logarithms
2. Limits and Continuity
2.1 Rates of Change and Tangents to Curves
2.2 Limit of a Function and Limit Laws
2.3 The Precise Definition of a Limit
2.4 One-Sided Limits
2.5 Continuity
2.6 Limits Involving Infinity; Asymptotes of Graphs
3. Derivatives
3.1 Tangents and the Derivative at a Point
3.2 The Derivative as a Function
3.3 Differentiation Rules
3.4 The Derivative as a Rate of Change
3.5 Derivatives of Trigonometric Functions
3.6 The Chain Rule
3.7 Implicit Differentiation
3.8 Derivatives of Inverse Functions and Logarithms
3.9 Inverse Trigonometric Functions
3.10 Related Rates
3.11 Linearization and Differentials
4. Applications of Derivatives
4.1 Extreme Values of Functions
4.2 The Mean Value Theorem
4.3 Monotonic Functions and the First Derivative Test
4.4 Concavity and Curve Sketching
4.5 Indeterminate Forms and L’Hôpital’s Rule
4.6 Applied Optimization
4.7 Newton’s Method
4.8 Antiderivatives
5. Integrals
5.1 Area and Estimating with Finite Sums
5.2 Sigma Notation and Limits of Finite Sums
5.3 The Definite Integral
5.4 The Fundamental Theorem of Calculus
5.5 Indefinite Integrals and the Substitution Method
5.6 Definite Integral Substitutions and the Area Between Curves
6. Applications of Definite Integrals
6.1 Volumes Using Cross-Sections
6.2 Volumes Using Cylindrical Shells
6.3 Arc Length
6.4 Areas of Surfaces of Revolution
6.5 Work
6.6 Moments and Centers of Mass
7. Integrals and Transcendental Functions
7.1 The Logarithm Defined as an Integral
7.2 Exponential Change and Separable Differential Equations
7.3 Hyperbolic Functions
8. Techniques of Integration
8.1 Integration by Parts
8.2 Trigonometric Integrals
8.3 Trigonometric Substitutions
8.4 Integration of Rational Functions by Partial Fractions
8.5 Integral Tables and Computer Algebra Systems
8.6 Numerical Integration
8.7 Improper Integrals
9. Infinite Sequences and Series
9.1 Sequences
9.2 Infinite Series
9.3 The Integral Test
9.4 Comparison Tests
9.5 Absolute Convergence; The Ratio and Root Tests
9.6 Alternating Series and Conditional Convergence
9.7 Power Series
9.8 Taylor and Maclaurin Series
9.9 Convergence of Taylor Series
9.10 The Binomial Series and Applications of Taylor Series
10. Parametric Equations and Polar Coordinates
10.1 Parametrizations of Plane Curves
10.2 Calculus with Parametric Curves
10.3 Polar Coordinates
10.4 Graphing in Polar Coordinates
10.5 Areas and Lengths in Polar Coordinates
10.6 Conics in Polar Coordinates
11. Vectors and the Geometry of Space
11.1 Three-Dimensional Coordinate Systems
11.2 Vectors
11.3 The Dot Product
11.4 The Cross Product
11.5 Lines and Planes in Space
11.6 Cylinders and Quadric Surfaces
12. Vector-Valued Functions and Motion in Space
12.1 Curves in Space and Their Tangents
12.2 Integrals of Vector Functions; Projectile Motion
12.3 Arc Length in Space
12.4 Curvature and Normal Vectors of a Curve
12.5 Tangential and Normal Components of Acceleration
12.6 Velocity and Acceleration in Polar Coordinates
13. Partial Derivatives
13.1 Functions of Several Variables
13.2 Limits and Continuity in Higher Dimensions
13.3 Partial Derivatives
13.4 The Chain Rule
13.5 Directional Derivatives and Gradient Vectors
13.6 Tangent Planes and Differentials
13.7 Extreme Values and Saddle Points
13.8 Lagrange Multipliers
14. Multiple Integrals
14.1 Double and Iterated Integrals over Rectangles
14.2 Double Integrals over General Regions
14.3 Area by Double Integration
14.4 Double Integrals in Polar Form
14.5 Triple Integrals in Rectangular Coordinates
14.6 Moments and Centers of Mass
14.7 Triple Integrals in Cylindrical and Spherical Coordinates
14.8 Substitutions in Multiple Integrals
15. Integration in Vector Fields
15.1 Line Integrals
15.2 Vector Fields and Line Integrals: Work, Circulation, and Flux
15.3 Path Independence, Conservative Fields, and Potential Functions
15.4 Green’s Theorem in the Plane
15.5 Surfaces and Area
15.6 Surface Integrals
15.7 Stokes’ Theorem
15.8 The Divergence Theorem and a Unified Theory
16. First-Order Differential Equations (Online)
16.1 Solutions, Slope Fields, and Euler’s Method
16.2 First-Order Linear Equations
16.3 Applications
16.4 Graphical Solutions of Autonomous Equations
16.5 Systems of Equations and Phase Planes
17. Second-Order Differential Equations (Online)
17.1 Second-Order Linear Equations
17.2 Nonhomogeneous Linear Equations
17.3 Applications
17.4 Euler Equations
17.5 Power Series Solutions
Appendices
1. Real Numbers and the Real Line
2. Mathematical Induction
3. Lines and Circles
4. Conic Sections
5. Proofs of Limit Theorems
6. Commonly Occurring Limits
7. Theory of the Real Numbers
8. Complex Numbers
9. The Distributive Law for Vector Cross Products
10. The Mixed Derivative Theorem and the Increment Theorem

Reviews

There are no reviews yet.

Be the first to review “Test Bank for University Calculus, Early Transcendentals ,(3rd Edition) by Joel R. Hass”

Additional Information


Resource Type:

Ebook Title:

Authors:

Publisher:

Related Test Books

Reviews

Your #1 Online Study Guide Resource

* We don’t share your personal info with anyone. Check out our Privacy Policy for more information