### Table of content:

Chapter 1: Calculus on Euclidean Space:

Euclidean Space. Tangent Vectors. Directional Derivatives. Curves in R3. 1-forms. Differential Forms. Mappings.

Chapter 2: Frame Fields:

Dot Product. Curves. The Frenet Formulas. ArbitrarySpeed Curves. Covariant Derivatives. Frame Fields. Connection Forms. The Structural Equations.

Chapter 3: Euclidean Geometry:

Isometries of R3. The Tangent Map of an Isometry. Orientation. Euclidean Geometry. Congruence of Curves.

Chapter 4: Calculus on a Surface:

Surfaces in R3. Patch Computations. Differentiable Functions and Tangent Vectors. Differential Forms on a Surface. Mappings of Surfaces. Integration of Forms. Topological Properties. Manifolds.

Chapter 5: Shape Operators:

The Shape Operator of M R3. Normal Curvature. Gaussian Curvature. Computational Techniques. The Implicit Case. Special Curves in a Surface. Surfaces of Revolution.

Chapter 6: Geometry of Surfaces in R3:

The Fundamental Equations. Form Computations. Some Global Theorems. Isometries and Local Isometries. Intrinsic Geometry of Surfaces in R3. Orthogonal Coordinates. Integration and Orientation. Total Curvature. Congruence of Surfaces.

Chapter 7: Riemannian Geometry: Geometric Surfaces. Gaussian Curvature. Covariant Derivative. Geodesics. Clairaut Parametrizations. The Gauss-Bonnet Theorem. Applications of Gauss-Bonnet.

Chapter 8: Global Structures of Surfaces: Length-Minimizing Properties of Geodesics. Complete Surfaces. Curvature and Conjugate Points. Covering Surfaces. Mappings that Preserve Inner Products. Surfaces of Constant Curvature. Theorems of Bonnet and Hadamard.

## Reviews

There are no reviews yet.